the startups.com platform about startups.comCheck out the new Startups.com - A Comprehensive Startup University
Education
Planning
Mentors
Funding
Customers
Assistants
Clarity
Categories
Business
Sales & Marketing
Funding
Product & Design
Technology
Skills & Management
Industries
Other
Business
Career Advice
Branding
Financial Consulting
Customer Engagement
Strategy
Sectors
Getting Started
Human Resources
Business Development
Legal
Other
Sales & Marketing
Social Media Marketing
Search Engine Optimization
Public Relations
Branding
Publishing
Inbound Marketing
Email Marketing
Copywriting
Growth Strategy
Search Engine Marketing
Sales & Lead Generation
Advertising
Other
Funding
Crowdfunding
Kickstarter
Venture Capital
Finance
Bootstrapping
Nonprofit
Other
Product & Design
Identity
User Experience
Lean Startup
Product Management
Metrics & Analytics
Other
Technology
WordPress
Software Development
Mobile
Ruby
CRM
Innovation
Cloud
Other
Skills & Management
Productivity
Entrepreneurship
Public Speaking
Leadership
Coaching
Other
Industries
SaaS
E-commerce
Education
Real Estate
Restaurant & Retail
Marketplaces
Nonprofit
Other
Dashboard
Browse Search
Answers
Calls
Inbox
Sign Up Log In

Loading...

Share Answer

Menu
Artificial Intelligence: I am writing a book on artificial intelligence, what are the biggest challenges that you have had applying AI to your business or to clients?
ED
ED
Evan Dunn, AI Product Strategy, Design and Management. answered:

AI has some very common roadblocks:
1. Most data scientists are expected to be their own product owners. Meaning, data scientists - who are programmers and mathematicians by training - are expected to become students of macroeconomics, supply and demand, marketing, customer qualification, pain points and value propositions, market definition, and the many other nuances of product strategy. This usually happens because most companies don't have a discipline of placing a product strategist/owner/manager as the head of the AI efforts. Product management has very well-defined frameworks for building web-based/mobile apps (SaaS apps). But very little has been done to articulate how to design a good algorithm, how to define metrics and dimensions and ML objectives so that a data scientist can hit the ground running, armed with clarity. Hence, most AI initiatives in non-AI companies fall flat on their faces.
2. AI doesn't make intuitive sense to statisticians, or people with a basic understanding of math, so there is a big resistance to some of its messaging, which can come across as oversimplification. For instance, whereas in traditional business-applied stats you can't just add more data in (it has to be cleaned and preprocessed), machine learning allows you to infuse messy, half-complete data and still keep improving the algorithms. I have seen many projects get halted by those in power - who have a vested interest in maintaining an old-school approach to regression modeling and predictions that is vastly outpaced by today's ML/AI capabilities.

I'm sure there are more examples, but hopefully this helps.

Talk to Evan Upvote • Share
•••
Share Report

Answer URL

Share Question

  • Share on Twitter
  • Share on LinkedIn
  • Share on Facebook
  • Share on Google+
  • Share by email
About
  • How it Works
  • Success Stories
Experts
  • Become an Expert
  • Find an Expert
Answers
  • Ask a Question
  • Recent Answers
Support
  • Help
  • Terms of Service
Follow

the startups.com platform

Startups Education
Startup Planning
Access Mentors
Secure Funding
Reach Customers
Virtual Assistants

Copyright © 2025 Startups.com. All rights reserved.